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Abstract. Onsager’s solution of the two-dimensional Ising model provides expressions for 
the spontaneous magnetisation and pair correlation functions. More detailed information, 
which provides insight into the clustering or ordering process, is obtained by expressing 
these correlation functions in terms of group probabilities. Each group consists of a central 
atom and its four nearest neighbours. Sum-rule equations for the twelve basic groups are 
solved to provide expressions for the group probabilities and the behaviour of the group 
probabilities as a function of temperature is discussed. 

1. Introduction 

The exact Onsager solution (McCoy and Wu 1973) of the two-dimensional king model 
provides explicit expressions for thermodynamic quantities and the pair correlation 
functions. A considerable effort has gone into the evaluation and visualisation of the 
groupings or clusters which occur in magnetic or alloy systems (Clapp 1971, Domb eta1 
1975, Domb and Stoll 1977). Although the pair correlation functions allow the 
short-range order parameters to be derived they do not directly give information 
relevant to larger particle groupings. The work of Verhagen and Harding (1979) 
showed that the magnetisation and correlation functions may be transformed into 
group probabilities, where a group is defined as an atom or spin with its four nearest 
neighbours. In the present work this idea is extended by developing sum rules for the 
group probabilities. The resultant sum-rule equation, which gives the magnetisation 
and correlation functions in terms of the group probabilities, is then inverted to give 
explicit expressions for the group probabilities. 

As the pair correlation function averages the spin correlation over the 32 group 
configurations of the square lattice, it is not surprising that the group probabilities 
display temperature and critical point behaviour not apparent in the pair correlation 
results. As each type of group is clearly associated with the volume, surface, line 
element, or point defect of a cluster, the insight gained into the group behaviour is 
useful in envisaging the general cluster development of the system. The calculations 
also provide accurate reference data gainst which the accuracy and convergence of 
Monte-Carlo algorithms can be determined. 

Although the Ising model applies equally well to magnetic, lattice-gas, or alloy 
studies, we have expressed the problem in terms of spin clustering in a ferromagnet. 
This allows the Ising model, and its solution in terms of the spin groups, to be seen in 
their simplest form and the results can be easily extended to the other areas if required. 
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( S O , O S O , N ) =  * 

2. Ising model 

a0 a-l a-2 . . . a-N+l 
al a0 a-l U - N + 2  

a2 a1 a0 . . . ' a - N + 3  

a N - 1  a N - 2  aN-3 . .  . a. 

'The Hamiltonian of the spin-; Ising model in a field H is 

I 

where the spin variables si take the values *1 and the first sum runs over all pairs of 
spins. In the present work we shall assume that only nearest-neighbour (NN) inter- 
actions are significant such that J(rii)  = J when rii is a NN vector and is zero otherwise. 
The magnetic moment per spin is denoted by m. 

It is convenient to define the reduced spin-pair correlation function by 

where s, is the spin at position r, and the angular brackets denote the thermodynamic 
expectation value in an infinite system. For a two-dimensional square lattice 

( 3 )  

The parameters are 

and 

with z = tanh PJ and P = l / k T .  The square root in ( 4 )  is defined such that 4(.rr)>O. 
The 'diagonal' spin correlation function (sO,OSN,N) may also be expressed as a Toeplitz 
determinant, similar to that given in (2)-(4).  Expressions for the first and second NN 
correlation functions have been obtained by McCoy and Wu (1973). For T > T,, where 
T, is the critical temperature, 

( S ~ , ~ S O , I )  = coth 2pJ[$+ T-' cosh' 2pJ(2  tanh' 2pJ - l ) K ( k , ) ]  

and 

(SO,OSI,L) = ( 2 / r k > ) [ E ( k > )  + (k :  - l ) K ( k > ) I .  
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and K and E are the complete elliptic integrals of the first and second kinds respectively 
(Cayley 1956, ErdClyi 1953). To obtain the third NN correlation function ( S ~ , ~ S ~ , ~ )  we 
need to evaluate the functions and a l  in (2). For T > T, 

E a;lk>K + (K  - E ) - (  2y - U*) dv rl]) 

and 

dv 
2a 
r b  

a l  = - { -a;'bK + (a;'b + a2a)r l  a;'k>K + ( K  - E )  - (2y - U*) rl]) 

where 

r1 being the complete elliptic integral of the third kind. For T < T,, 
evaluated via the numerical integration of (3). 

the letter B the fractional composition variables are 

and a l  were 

If the 'up' spins of the system are referred to by the letter A and the 'down' spins by 

X A  = h(1 f (SO)) X B  = ;( 1 - (SO)) U ( 5 )  

As (so) is equal to the magnetisation M ( H )  of the spin system it is given by the 
expression 

(SO) = M ( H )  = (1 - ~ i n h - ~  2pJ)1'8 P > l / k T c  
= O  p < l / kT , .  

(6 )  

A pair of spins separated by the vector r may be of AA, AB, BA or BB type and the 
fraction of such spin pairs occurring in the lattice is denoted by X A A ( r ) ,  X A B ( r )  = X B A ( r )  

and X B B ( r )  respectively. These spin-pair fractions may be expressed as a function of the 
composition variables xA and xB and the reduced spin correlation function r(r): 
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A patterns 

3. Group relations 

mm 

The 12 groups of the two-dimensional square lattice are shown in figure 1 and are 
referred to as A or B groups depending on the spin of the central site. The probability of 
forming a group having a positive central spin and n positive nearest-neighbour spins is 

Figure 1. The 12 basic groups of the two-dimensional square lattice. 

denoted as A,  and the corresponding probability of having a negative spin surrounded 
by n positive spins is B,. It will also be useful to refer to each of the possible spin 
configurations by the index c, with the probability of forming such a configuration being 
denoted by Pc. Including the possible degeneracies of each of the spin groups there are 
32 different configurations. Knowledge of the configuration probabilities Pc allows the 
calculation of the magnetisation and pair correlation functions, and conversely know- 
ledge of these quantities determines the configurational probabilities for the square 
lattice via the application of the following three sum rules: 

C P c = l  
C 

where s ? )  refers to the spin at position r relative to the central site in a group of 
configuration c. The sum rules (9) and (10) may also be expressed in terms of the spin 
and pair fractions XA and XAA(r):  

Although there are 32 PC values, symmetry arguments reduce the number of 
different group probabilities to 12, there being 6 A groups and 6 B groups. It is, 
however, possible to relate the A ,  and B, probabilities. Consider two spin systems, 
identical except that in one system a particular site (having n NN positive spins) has 
positive spin (system A), while for the other system the same site has negative spin 
(system B). The ratio of the probabilities of occurrence of these two systems is given by 
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the ratio of their respective Boltzmann factors: 

P(system A) - exp[- (-J CNN Sj - mH)/kT] 
P(system B) - exp[ - (J CNN si + mH)/kT]  

= exp[(2mH - 8J)/kT][exp(4J/kT)]” 

= K A ,  

where 

K = exp[(2mH- 8J) /kT]  (12) 
and 

A = exp(4JIkT). 

As (11) is true for all states of the system we obtain 

A,/B, = KA,. (14) 
Expressing the sum rules in terms of the group probabilities A ,  and B, and using the 

relationship (14) leads to the reduced form of the sum-rule equation: 

i.e. X = RB where X and B are the column matrices and R is the sum-rule matrix in 
(15). 

The spin fraction XA may be evaluated from ( 5 )  and (6), and the spin-pair fraction 
X A A ( ~ )  from (7) and (1). The reduced sum-rule equation may be solved numerically for 
the group probabilities B,. Alternatively, provided the field H is zero, such that 
K = K2, (15) may be inverted to give 

B = R-’X (16) 
where the inverse of the sum-rule matrix 

- I 2 A 2 ( A  - 3 )  4A2(A + 1) - 4 A Z ( 2 A  -3)  - 4 A Z ( A  + 1) 4 A 2 ( A  - 1) 2 A Z ( A  - 1) 
3 A  - 3 A ( A 2 + 1 )  2 A ( A 2 - 3 )  4A ( A 2  + 1) - 2 A ( A ’ -  1) -,+(A’ - 1) 

- ( A  + 1) ( A  + 1 ) ( A 2  + 1) - 2 ( A 2  - 2 A  - 1 )  -2 (A + 1 ) ( A 2  + 1) (A - 1 ) ( A  + 2A (A - 1) 

-(A + 1 )  ( A + l ) ( A Z + l )  - 2 ( A 2 - 2 A - - 1 )  - 2 ( A  +1)(A2+1) 4 A ( A  -1) (A - I)(A’ + 1) 
1 - ( A 2 +  1) -4 4 ( A 2 +  1) - 2 ( A 2 -  1) - ( A 2 - 1 )  

0 0 4 -4(A + I )  4 ( A  - 1) 2 ( A  - 1) 

4. Group probabilities 

The group probabilities B, were calculated from (16) for the zero-field, H = 0, case. As 
no exact solutions for the magnetisation and spin correlation functions exist for 
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non-zero field this precluded calculation of the non-zero field group probabilities. The 
general solution of the nearest-neighbour, isotropic Ising model may be expressed in 
terms of the two parameters K and A ,  (12) and (13); however, for H = 0 K = A-' and the 
solution becomes a function of the single parameter A. The Ising lattice is ferromagnetic 
when A > 1-0 ( J > O )  and antiferromagnetic when A < 1.0 ( J < O ) .  To describe the 
antiferromagnetic case the square lattice is subdivided into two equivalent sublattices 1 
and 2 in such a way that all the nearest neighbours of a member of 1 belong to sublattice 
2 and vice versa. The antiferromagnetic spin arrangement for a given J < 0 may then be 
obtained from the ferromagnetic arrangement corresponding to 1JI by reversing all 
spins on one of the sublattices. The resulting antiferromagnet has the same energy and 
thermal properties as the corresponding ferromagnet. For the antiferromagnet we 
define sublattice group probabilities A(I), and B(l ) ,  where the groups are centred on 
sublattices 1(1= 1&2). If the antiferromagnet is formed by reversing the spins on 
sublattice 2 of a ferromagnet having group probabilities A, and B,, then on sublattice 1 

A(1lfl =A4-, B(1), =B4-, 

and on sublattice 2 

A(2), = B, B(2), =A,. 

The general behaviour of the ferromagnetic group probabilities in the range 
1-0 s A s 6.2 is shown in figure 2. In a fully ordered antiferromagnetic spin system each 
spin is surrounded by unlike nearest neighbours while in a completely clustered 

IC 

10' 

P 

I O '  

IO' 

Figure 2. The group probabilities A,, B,, and the nearest-neighbour pair fraction X A A ~  of 
the square lattice at zero magnetic field as a function of A. 
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ferromagnetic spin system each spin is surrounded by like nearest neighbours. In this 
sense it is convenient to describe the A4 and Bo groups as being fully clustered and the 
A .  and B4 groups as being fully ordered. The groups lying between these two extremes 
exhibit partial clustering or partial ordering, depending on their position in the group 
sequence of figure 1. At A = 1.0 (infinite temperature) the system is completely 
disordered and exhibits random mixing with all groups having the same probability of 
occurrence, P, = A. At high temperature (A = 1) the effective mean field acting on each 
group is small; hence the groups appear to behave as independent units, and the group 
probabilities take the asymptotic high-temperature values 

(A + 1.0) A =' f n - 1  
fl 32A 

given by the Boltzmann factor. The group probabilities are therefore maximum for the 
fully clustered A4(Bo) group and range downwards through the sequence A3(B1); 
A2,  Ai(& Bi); Al(B3) to the fully ordered AO(B4) group. 

The A4(Bo) probability increases monotonically to the critical point at A, = 
5.828427 and the partially clustered A3(B1) probability exhibits a local maximum of 
0.044860 at A = 3.228. At the opposite end of the clustering sequence the fully ordered 
Ao(B4) group initially decreases, as expected, but then exhibits a local minimum when 
d(ln A4)/d(ln A )  = 2. This relation follows from (14) and the symmetry relation B, = 
A4-,(A CA,) .  The group probabilities at the critical point are given in table 1. 

Table 1. Two-dimensional square lattice group probabilities at A, = 5.828427. 

AI(Bo) A3(Bl) Az(Bz) AABA Al(B3) A d B J  

0,3161756 0,0281769 0,00882463 0,00358657 0,00483439 0*009307344 

For A > A, the symmetry relation is no longer valid for all groups and in particular 
the (A4,  Bo), (A3,  Bl ) ,  ( A l ,  B3) and (Ao, B4) branches split into two separate arms at A,. 
The behaviour of the group probabilities in the vicinity of the critical point is shown in 
figures 3(a)-(f). Expressions for the separation between the A ,  and B4-, arms may be 
derived from the two sum rules (9), corresponding to r being taken as (i) the central site 
and (ii) one of the surrounding four 'boundary' sites, and (14): 

A ,  -B4-, = ~ L , ( s o )  (17) 
where 

A 2 ( A  -3) 
2(A - 

L4 = 

A 
2 ( A  - 

L3 = 

-1 
2(A - 1)3 

L1= 

-(A -3) 
2(A - q3' Lo = 
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'56 1 5 7  5 0  5 9  6 0  f 

t 46 5 7  5 0  5 9  6 0  61 6 

Figure 3. Group probabilities near h,(H = 0 ) :  ( a )  A d ,  Bo; ( b )  A3,  B1; ( c )  A?, B z ;  ( d )  
Ai, Bi; ( e )  AI,  B3; (f) Ao, B4. 

If the four boundary spins of a group are in an n = 2 configuration the probability of the 
central spin being 'up' (A) or 'down' (B) is equal. Therefore A2 = B2 and Ai= B i  and 
the symmetry splitting for n = 2 does not occur. 

Equations (17)-(21) give the high-temperature symmetry relation A ,  = B4-n for 
A < A ,  and show that the sharp splitting which develops at A,  is due to the rapid 
development of spontaneous magnetisation (so). Inspection of figure 3 shows that the 
mean of A, and B4-, for A 2 A c  is a smooth continuation of the high-temperature 
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A,(B4-,) curve. The A,, and B4-, group probabilities differ from this mean value by 
+L,,(so). In particular, in the region of the critical point 

A An (Ac)  + L b o ) .  (22)  
In a ferromagnetic system like spins tend to group together to form clusters of A or B 

spins. The boundary surface between clusters is defined by the existence of AB spin 
pairs and the total surface ‘area’ is equal to the number of AB spin pairs in the system. 
The total cluster surface area per lattice site is 

Inserting (22)  into (23)  we find that in the close vicinity of the critical point S(A) = S(h,), 
that is there is no change in total cluster surface area during the initial rapid develop- 
ment of spontaneous magnetisation. This is an interesting result in view of the large 
change in cluster volumes due to spin reversal at A,. In figure 4 (S)site is plotted as a 
function of A.  The total surface area is a relatively slowly varying monotonic function of 
A with a point of inflection at A,. 

I 1 

I J 
1 3 5 7 9 

A 

Figure 4. The total surface areaof the square lattice at zero magnetic field, per lattice site, as 
a function of A .  

5. Conclusion 

The determination and knowledge of group probabilities provides detailed knowledge 
of the local configurations in an Ising lattice. Changes in cluster size and topology, for 
instance, are reflected in the relative magnitudes of the group probabilities and offer an 
alternative way of characterising clusters. Information on the total cluster surface can 
also be obtained from the group probabilities. As the group terminology is closer to 
that employed in Monte-Carlo simulation than the pair correlation or spontaneous 
magnetisation functions they provide an excellent reference against which the accuracy 
of simulation studies can be determined. 



3252 M P Harding and P J Bunyan 

Acknowledgments 

We are indebted to the late Dr A M  W Verhagen for introducing us to the Ising model. 

References 

Cayley A 1956 A n  Elementary Treatise on Elliptic Functions (New York: Dover) 
Clapp P C 1971 Critical Phenomena in Alloys, Magnets, and Superconductors (New York: McGraw-Hill) pp 

Domb C, Schncider T and Stoll E 1975 J. Phys. A: Math. Gen. 8 L90-4 
Domb C and Stoll E 1977 J. Phys. A: Math. Gen. 10 1141-9 
Erdtlyi A 1953 Higher Transcendental Functions (New York: McGraw-Hill) 
McCoy B M and Wu T T 1973 The Two-dimensional Zsing Model (Cambridge: Harvard University Press) 
Verhagen A M W and Harding M P 1979 Physics of Materials (Melbourne: Department of Mining and 

299-307 

Metallurgy, University of Melbourne and CSIRO) pp 293-304 


